

The Hidden Jewel of the Metroplex.

2022 Annual Drinking Water Quality Report

City of Westworth Village Water Department

cityofwestworth.com/utility

311 Burton Hill Rd.
Westworth Village, TX 76114

City of Westworth Village (PWS 2200131)

Consumer Confidence Report

2022 Annual Drinking Water Quality Report

City of Westworth Village (PWS 2200131) Consumer Confidence Report

Phone Number: 817-710-2505

In accordance with TCEQ (Texas Commission on Environmental Quality) regulations we are providing the attached information regarding water quality. This is a routine procedure, not an indication of any problems with our water supply. For your protection TCEQ requires that we monitor numerous substances that may be present in water. The attached charts list these possible contaminants, the maximum allowed levels, test results. In compliance with TCEQ regulations, the Westworth Water Department performs daily water monitoring activities to ensure that we can provide our customers with safe drinking water. From time to time your drinking water may have differences in odor and taste. We work with Fort Worth Water Department, who supplies our water, to minimize these occurrences. Despite these changes the water remains safe for consumption.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons, such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Public Participation Opportunities:

When: Monday - Friday Time: 8:00 AM - 5:00 PM Location: 311 Burton Hill Rd. (*City Hall*) Phone: 817-710-2505

To learn about future public meetings (concerning your drinking water), or to request to schedule one, please call us.

En Español

Este informe incluye información importante sabre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (817) 710·2505, para hablar con una persona bilingue en español.

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

WATER SOURCES: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Where do we get our drinking water?

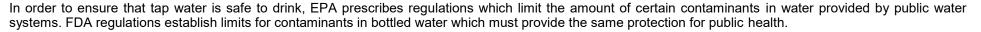
Our drinking water is obtained from SURFACE water sources. It comes from the following Lake/River/ Reservoir/Aguifer: LAKE WORTH, RICHLAND CHAMBERS RESERVOIR, EAGLE MOUNTAIN LAKE, CLEAR FORK TRINITY RIVER, CEDAR CREEK RESERVOIR. A Source Water Susceptibility Assessment for your drinking water source (s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus our source water protection strategies. Some of this source water assessment information will be available later this year on Texas Drinking Water Watch at www.tceq.texas.gov. For more information on source water assessments and protection efforts at our system, please contact us.

2022 Consumer Confidence Report for Public Water System CITY OF WESTWORTH VILLAGE (PWS 2200131)

This is your water quality report for January 1 to December 31, 2022

City of Westworth Village provides surface water from Fort Worth PWS 2200012, located in Tarrant County.

Definitions and Abbreviations	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Action Level Goal (ALG):	The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL:	million fibers per liter (a measure of asbestos)
mrem:	millirems per year (a measure of radiation absorbed by the body)
na:	not applicable.
NTU:	nephelometric turbidity units (a measure of turbidity)
pCi/L:	picocuries per liter (a measure of radioactivity)
ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
Ppq:	parts per quadrillion, or picograms per liter (pg/L)
Ppt:	parts per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.


Information About Your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The city of Westworth Village report a 7.6% water loss in our distribution system. This loss reflects water main breaks, theft, infrastructure issues, Fire Department use and some unmetered flushing.

Information About Source Water

City of Westworth Village purchases water from City of Fort Worth located in Tarrant County.

'TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact Cody Morse 817-710-2504.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2020	1.3	1.3	0.3724	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2020	0	15	1.6	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

2022 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level or Average Detected	Range of Individu- al Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)		5	3.2-5.6	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total Trihalomethanes (TTHM)	2022	6	1.38 - 10.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
---------------------------------	------	---	-------------	-----------------------	----	-----	---	--

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level or Average Detected	Range of Individu- al Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitro- gen]	2022	0.15	0.14 - 0.15	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines (Total)	2022	3.14	2.35 - 3.72	4	4	ppm	N	Water additive used to control microbes.

Drinking Water Quality Test Results

Contaminant	YEAR	Measure	MCL	Public Health Goal	Your water	Viola	tion	Common Sources of Substance
Turbidity	2022	NTU	TT=1 TT= Lowest monthly % of samples ≤ 0.3 NTU	N/A	0.7 99.9%	N	0	Soil runoff (Turbidity is a measure of the cloudiness of water. It is monitored because it is a good indicator of the effectiveness of the filtration system.)
Contaminant		Measure	MCL	Public Health Goal	Your water	Range	Violation	Common Sources of Substance
Total Coliforms (including fecal coliform & E. coli)	2022	% positive samples	тт	0	0	0	0	Coliforms are naturally present in the environment as well as feces; fecal coliforms and E. coli only come from human and animal fecal waste.
Contaminant		Measure	MCL	Public Health Goal	Your water	Range	Viola- tion	Common Sources of Substance
Beta particles & photon emitters ¹	2021	pCi/L	50	0	7	7 to 7	No	Decay of natural and man-made deposits
uranium	2021	ppb	30		1.1	1.1 TO 1.1	No	Erosion of natural deposits
Arsenic	2022	ppb	10	0	1.7	0 to 1.7	No	Erosion of natural deposits; runoff from orchards, runoff from glass and electronics production waste
Atrazine	2022	ppb	3	3	0.1	0 to 0.1	No	Runoff from herbicide used on row crops
Barium	2022	ppm	2	2	0.08	0.04 to 0.08	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	2022	ppm	100	100	2.8	0 to 2.8	no	Erosion of natural deposits; discharge from steel and pulp mills
Cyanide	2022	ppb	200	200	51	0 to 51	No	Discharge from plastic and fertilizer factories; discharge from steel and metal factories
Fluoride	2022	ppm	4	4	0.64	0.18 to 0.64	No	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate (as Nitro- gen)	2022	ppm	10	10	0.57	0.13 to 0.57	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Bromate	2022	ppb	10	0	5.81	0 to 137	No	By-product of drinking water disinfection.
Haloacetic Acids	2022	ppb	60	NA	7.98	2.2 to 7.4	No	By-product of drinking water disinfection
Total Trihalome- thanes	2022	ppb	80	NA	13.9	0 to 17.3	No	By-product of drinking water disinfection

Contaminant	Measure	MDRL	Public health goal	Your wa	ter F	Range	Violation	Common Sources of Substance
Chloramines	ppm	4	4	3.14	2.3	5—3.72	No	Water additive used to control microbes
Contaminant	M	CL	MCLG	High	Average	Low	Violation	Common Sources of Substance
Total Organic Carbon	TT = % rei	moval	N/A	1	1	1	No	Naturally occurring
It is used to determine disinfe	It is used to determine disinfection by product procureors. Fort Worth was in compliance with all monitoring and treatment technique requirements for disinfection by product procureors.							

Abbreviations Used in Tables

MCL: Maximum Contaminant Level – the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG: Maximum Contaminant Level Goal – the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL: Maximum Residual Disinfectant Level – the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG: Maximum Residual Disinfectant Level Goal – the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A: not applicable/does not apply

NTU: Nephelometric Turbidity Unit; a measure of water turbidity or clarity

pCi/L – Picocuries per liter; a measure of radioactivity

ppb – Parts per billion or micrograms per liter (μg/L)

ppm – Parts per million or milligrams per liter (mg/L)

TT: Treatment Technique – a required process intended to reduce the level of a contaminant in drinking water

Unregulated Contaminants 2022

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Contaminant	Measure	MRDL	Public health	Your Water	Range of Detects	Common Sources of Substance
Bromoform	ppb	Not regulated	0	0.62	0 to 3.24	By-products of drinking water
Bromodichloromethane	ppb	Not regulated	0	2.93	0 to 5.43	disinfection; not regulated individually; included in Total Trihalomethanes
Chloroform	ppb	Not regulated	70	2.45	0 to 5.71	
Dibromochloromethane	ppb	Not regulated	60	2.41	0 to 5.9	
Dibromoacetic Acid	ppb	Not regulated	N/A	1.24	0 to 2.90	
Dichloroacetic Acid	ppb	Not regulated	0	3.47	1.80 to 5.60	By-products of drinking water disinfection; not regulated individually;
Monobromoacetic Acid	ppb	Not regulated	N/A	0	0 to 0	included in Haloacetic Acids
Monochloroacetic Acid	ppb	Not regulated	70	0.02	0 to 1	
Trichloroacetic Acid	ppb	Not regulated	20	0	0 to 0	

Secondary Constituents

These items do not relate to public health but rather to the aesthetic effects. These items are often important to industry.

Item	Measure	Your water
Bicarbonate	ppm	87.6 to 144
Calcium	ppm	33.6 to 51.9
Chloride	ppm	20.9 to 47.0
Conductivity	µmhos/cm	310 to 475
рН	units	8.1 to 8.5
Magnesium	ppm	3.95 to 10
Sodium	ppm	25 to 35
Sulfate	ppm	26.0 to 41.6
Total Alkalinity as CaCO₃	ppm	90.4 to 144
Total Dissolved Solids	ppm	161 to 278
Total Hardness as CaCO₃	ppm	100 to 171
Total Hardness in Grains	grains/gallon	6 to 10

Corrosion Control

To meet the requirements of the Lead and Copper Rule, Fort Worth achieves corrosion control through pH adjustment.

Microorganism Testing Shows Low Detections in Raw Water

Tarrant Regional Water District monitors the raw water at all intake sites for *Cryptosporidium*, *Giardia Lamblia* and viruses. The source is human and animal fecal waste in the watershed.

The 2020 sampling showed low level detections of Cryptosporidium,

Giardia Lamblia and viruses in some but not all of the water supply sources.

Viruses are treated through disinfection processes. *Cryptosporidium* and *Giardia Lamblia* are removed through disinfection and/or filtration.

TCEQ Assesses Raw Water Supplies for Susceptibility

Fort Worth uses surface water from Lake Worth, Eagle Mountain Lake, Lake Bridgeport, Richland Chambers Reservoir, Cedar Creek Reservoir, Lake Benbrook and the Clear Fork Trinity River.

Fort Worth owns Lake Worth. The U.S. Army Corps of Engineers is responsible for Benbrook Lake. The other four lakes are owned and operated by Tarrant Regional Water District.

The Texas Commission on Environmental Quality completed an assessment of Fort Worth's source waters. TCEQ classified the risk to our source waters as high for most contaminants.

High susceptibility means there are activities near the source water a or watershed make it very likely that chemical constituents may come into

contact with the source water. It does not mean that there are any health risks present.

Tarrant Regional Water District, from which Fort Worth purchases its water, received the assessment reports.

For more information on source water assessments and protection efforts at our system, contact Stacy Walters at 817-392-8203.

Further details about the source-water assessments are available in the Texas Commission on Environmental Quality's Drinking Water Watch database at http://dww2.tceq.texas.gov/DWW/JSP/SWAP.jsp?tinwsys_is_number=5802&tinwsys_st_code=TX&wsnumber=TX2200012 %20%20%20&DWWState=TX.

EPA collects data to decide future regulations

Water utilities in the United States monitor for more than 100 contaminants and must meet numerous regulations for water safety and quality. But should other contaminants be regulated? The 1996 Safe Drinking Water Act amendments require that once every five years EPA issue a new list of no more than 30 unregulated contaminants to be monitored by public water systems. Monitoring for these contaminants helps EPA decide whether the contaminants should have a standard set to protect public health. UCMR testing provides scientifically valid data on the occurrence of these contaminants in drinking water. Health research is necessary to know whether these contaminants pose a health risk.

For the Fifth Unregulated Contaminant Rule, (UCMR5), public water systems must sample 30 contaminants for four consecutive quarters from 2023 to 2025. Fort Worth's sampling occurs from January 2023 through January 2024. Fort Worth Water is posting the sampling results on its website at www.fortworthtexas.gov/departments/water/drinking-water/ucmr.

Additional Information: www.epa.gov/dwucmr

What is being tested in UCMR5 In UCMR5, EPA selected 29 per- and polyfluoralkyl substances (PFAS) and one metal/ pharmaceutical — lithium. PFAS are a group of synthetic chemicals used in a wide range of consumer products and industrial applications. These include non-stick cookware, water-repellent clothing, stain-resistant fabrics and carpets, cosmetics, firefighting foams, electroplating, and products that resist grease, water, and oil.

PFAS are found in the blood of people and animals and in water, air, fish, and soil at locations across the United States and the world.

Lithium is a naturally occurring metal that may concentrate in brine waters. Lithium salts are used as pharmaceuticals, in electrochemical cells, batteries and organic syntheses